Home
Shop

09036857618

EVALUATION OF SOME CHEMICAL CONSTITUENTS OF SELECTED ENERGY DRINKS

Abstract

This research is on Evaluation of some chemical constituents of selected energy drinks. This research work examined and compares the physicochemical properties and some chemical constituents of selected energy drinks. Fourteen (14) brands of energy drinks samples consisting eleven (11) liquid and three (3) powdered forms were randomly purchased. All samples were analyzed for their physicochemical properties (pH, turbidity, conductivity and total dissolved solids), trace and heavy metals, aspartame, sugar and caffeine contents. Results showed that the physicochemical properties (i.e. pH, turbidity, conductivity and total dissolved solids) ranged from 4.47 ñ 0.012 – 5.96 ñ 0.012, 8 ñ 0.577

? 592 ñ 1.155 NTU, 2.21 ñ 0.006 ? 1975 ñ 1.732 æs/cm, and 243 ñ 0.577 ? 1064 ñ 0.577 mg/L respectively. Energy drinks analyzed all fell within the FDA recommended range for the physicochemical properties analyzed. Iron, calcium, zinc and potassium were found in all the energy drinks and their concentration ranged from 1.961 ñ 0.0003 – 0.294 ñ 0.0005 mg/L, 2.763 ñ 0.0009 – 19.310 ñ 0.0015 mg/L, 0.045 ñ 0.0001 – 13.887 ñ 0.0037 mg/L, and 2.0 to 2500 mg/L respectively. The copper, lead and manganese concentration of energy drinks ranged from 0.002 ñ 0.0002 – 0.102 ñ 0.0003 mg/L, 0.028 ñ 0.0006 – 0.209

ñ 0.0009 mg/L and 0.003 ñ 0.0001 – 0.024 ñ 0.0002 mg/L respectively. The concentration of copper and manganese were below the MCL of 1.0 mg/L and 0.05 mg/L respectively while lead had a concentration above the MCL of 0.01 mg/L. Cadmium was not detected in all energy drinks except for sample EJ which had a concentration of 0.102 ñ 0.0003 mg/L and exceeded the MCL of 0.005 mg/L. The caffeine, aspartame and sugar concentrations ranged from 1.11 mg/L ? 2487.13 mg/L, 6.51 mg/L ? 1491.19 mg/L, and 16.98 ? 1686.73 mg/L respectively. Caffeine and aspartame concentrations in all the energy drink samples were below the FDA set standard of 400 mg/L and 3000 mg/L respectively except for sample AL which had a concentration above the set standard for

caffeine. Though the analyzed parameters were mostly below the set standards, especially caffeine, aspartame and sugar, it is important that the pattern of consumption of these drinks must be monitored to minimize ingestion of excess doses of harmful substances to prevent the reported adverse effects.

Original price was: ₦3,000.00.Current price is: ₦2,500.00.

Description

CHAPTER ONE

1.0 INTRODUCTION

This research is on Evaluation of some chemical constituents of selected energy drinks. Energy drinks refer to beverages that contain large doses of caffeine and other legal stimulants such as taurine, carbohydrates, glucuronolactone, inositol, niacin, panthenol, and ?-complex vitamins which are considered as source of energy (Attila and €akir, 2009). The consumption of readily available energy drinks has increased significantly with young adults forming the largest part of the consumers. History of energy drink dates back to 1987 when Red Bull was introduced in Austria. It became more popular in the 1990s following its introduction to the United States. Since then the sale of this drink has increased exponentially. In 2006, the energy drink market grew by 80% (Foran et al., 2011). This is because manufactures claim the drinks can boost energy levels as well as physical endurance, improve concentration and reaction speed (Van den Eynde et al., 2008).

In recent years, a number of different energy drinks have been introduced in the Nigerian market to provide an energy boost or as dietary supplements. These drinks are marketed specifically to children and young adults. These products have been used for various reasons. A survey conducted among college students shows that 67% of students admitted using energy drinks to cope with insufficient sleep, 65% mentioned increasing energy and 54% use it for fun at parties; 50% for studying or completing a major course project, 45% used it while driving a car for a long period of time and 17% for treating hangover (Malinauskas et al., 2007). These products have also been used to reduce the depressor effect of alcohol or even to gain social status (Ferreira et al., 2004; Kaminer, 2010).

Many energy drinks are promoted as being nutraceutical foods, boosting health, energy, or otherwise having sought-after benefits. There is some concern among health professionals that these beverages, and the drinking behaviours of the targeted consumers, may in fact have adverse health consequences. The most commonly reported adverse effects include insomnia, nervousness, headache, and tachycardia (Clauson et al., 2008). In a recent study, heavy consumption of energy drinks was attributed to new onset seizures in four patients (Iyadurai and Chung, 2007) and hospitalization of individuals with pre-existing mental illness (Chelben et al., 2008).

1.1 Energy Drinks

Energy drinks first appeared in Europe and Asia in the 1960s in response to consumer demand for a dietary supplement that would result in increased energy (Reissig et al.,

2008). In 1962, a Japanese company, Taisho Pharmaceuticals, launched Lipovitan D, one of the very first energy drinks, which is still dominating the Japanese market. Since the 1960s, the energy drink market has grown into a multibillion dollar business which has been reported as being the fastest growing segment in the beverage industry. Energy drinks have established a viable position in the beverage market as evidenced by their commonplace consumption in the morning, afternoon, and night, not only by the general consumer, but those of age 18 to 34 in particular (Lal, 2007).

The popularity of energy drinks and the growth in their consumption among adolescents and young adults have brought worries regarding general health and well being of these consumers. Adolescents and young adults are often uninformed about the content of energy drink (Rath, 2012).

1.2 Contents of Energy Drinks

There are hundreds of energy drinks available in the market, many share very similar ingredient profiles. Most of these energy drinks consist mainly of caffeine, Taurine, Guarana, Ginseng, B vitamins, Ginko Biloba, L-carntine, sugars, Antioxidants, Glucuronolactone, Yerba Mate, Creatine, Acai Berry, Milk Thistle, L-theanine, Inositol and artificial sweetners (Babu et al., 2008).

1.2.1 Caffeine

Caffeine is probably the most frequently ingested pharmacologically active substance in the world. It is one of the main ingredients of stimulant drinks and it is also present in tea, coffee and other beverages and foods. Caffeine is extracted from the raw fruit of over sixty species of coffee plants (coffea Arabica), all part of the methylxanthine family. The dimethylxanthine derivatives, theophylline and theobromine, are also found in a variety of plants. It is also extracted from tea, kola nuts, and cocoa. The average total intake of caffeine in the Republic of Ireland and the UK is estimated to be 214 and 278 mg per person per day, respectively (FSPB, 2010). Data from the consumption survey, based on weekly intake, indicates that among stimulant drink consumers, the average daily caffeine intake from stimulant drinks alone would be approximately 35 mg, rising to about 90 mg among the highest consumers (FSPB, 2010). This does not appear excessive. However, when the consumption of stimulant drinks in a single session was investigated, the average caffeine consumed was approximately 240 mg (3 cans), rising to about 640 mg (8 cans) among the highest consumers (FSPB, 2010). Such large intake levels among the highest consumers are a cause of concern, particularly in relation to the known potential acute health effects of caffeine such as tachycardia, increases in blood pressure and dehydration, as well as behavioural and cognitive effects. The health effects of chronic or habitual caffeine consumption remain uncertain.

Custom tab

Back to Top
Product has been added to your cart
×