Home
Shop

09036857618

EFFECT OF ACRYLIC POLYMER DISPERSIONS ON WATER VAPOUR PERMEABILITY AND SOME OTHER PHYSICAL PROPERTIES OF FINISHED LEATHERS

Abstract

The effect of acrylic polymer dispersions on the water vapour permeability and some other properties of finished leathers have been studied. An acrylic based commercial binder AE 558 Nycil has been characterized and its effect when applied in a finish formulation on some of the physical properties of originally retanned leathers was investigated. The binder was found to have an intrinsic viscosity of 227 dL/g, and a viscosity molecular weight (Mv) of 4.03×105. This was obtained by conducting a solution viscosity measurement of the solid polymer in toluene at 25 oC. The melting temperature of the solid binder has been found to be in the range 361.7 oC – 370 oC. The results of these physical properties suggest that this is a very high molecular weight polymer with high thermal stability. Formulations for leather finishing was prepared containing the binder at varied proportions of 125 g, 150 g, 175 g, 200 g and 250 g and was applied on the leather substrates corresponding to samples A1, A2, A3, A4, and A5 respectively. Tests on some of the physical properties of these coated samples were conducted. The water vapour permeability of the originally retanned (uncoated) leathers was reduced significantly after the finish was applied. A1 has the lowest permeability at 125 g of the binder in the formulation, while A5 has the highest permeability at 250 g of the binder in the formulation. Generally, the water vapour permeability of the coated leathers increases as the factor varied in this experiment was increased. A3 had the highest Shore A value at 175 g of the binder in the formulation while A5 has the lowest Shore A value at 250 g of the binder in the formulation. Distension and Bursting strength of the uncoated leathers was improved after the leathers were coated. However, there was no particular trend in effect as the quantity of the binder in the finish formulation increased. The fastness of the coated samples generally increased as the quantity of the binder in the finish formulations was increased with sample A5 having the best resistance to wet rub action.

3,000.00

Description

CHAPTER ONE

1.0 INTRODUCTION

Acrylics are esters of acrylic acids, which are the products formed by the reaction of an acrylic acid and alcohol. The esters of acrylic acid polymerise readily to form exceptionally clear plastics. These are widely used in applications requiring clear durable surfaces, e.g. in the aircraft and automobile industries. In more common use are surface coatings involving acrylics. The physical properties of acrylics (such as gloss, hardness, adhesion and flexibility) can be modified by altering the composition of the monomer mixture used in the polymerisation process. Acrylics are used in a wide range of industries, and the list below is simply a selection of some of the more common examples: Adhesives, textile industry (e.g. making sponge fill used in padded

jackets), paper coatings, paint industry particularly in paints used for road markings.

The polymerisation process proceeds readily in the presence of catalysts and may be carried out in any one of four different ways: emulsion, bulk, solution or in suspension.

Emulsion polymerisation occurs in a water/monomer emulsion using a water-soluble catalyst. Emulsion polymerisation is the main process used in the production of acrylic polymers.

Bulk polymerisation is carried out in the absence of any solvent. The catalyst is mixed in with the monomer and the polymerisation is then left to occur with time. This is the method commonly used to manufacture acrylic sheets.

Solution polymerisation is carried out in a solvent in which both the monomer and subsequent polymer are soluble. Only low molecular weight polymers can be manufactured by this process, as high molecular weight polymers cause very high viscosities.

Suspension polymerisation is carried out in the presence of a solvent usually water, in which the monomer is insoluble, and in which it is suspended by agitation. To prevent the droplets of

1

monomer from coalescing and also to prevent the polymer from coagulating, protective colloids are added. Suitable colloids include bentonite, starch, polyvinyl alcohol and magnesium silicate. In contrast to emulsion polymerisation the catalyst is monomer-soluble and is dissolved in the suspended droplets. The polymers are manufactured from monomers that are formed from the reactions of acrylic acids with alcohols. These are then polymerised using a radical initiator in a water emulsion.

The following components are needed for the emulsion polymerisation reaction: Monomer

Monomers are prepared by a reversible reaction between an acrylic acid and an alcohol:

CH2= CR-COOH + R’ OH CH2=CR-COOR’ + H2O
Acrylic acid alcohol alkyl acrylate

The major monomers used are ethyl acrylate, methyl methacrylate and butyl acrylate, as well as non-acrylic monomers such as vinyl acetate and styrene which behave similarly.

Surfactant

A surfactant is a substance composed of mutually repellent polar and non-polar ends. The surfactant surrounds each monomer droplet with a layer of surfactant with the polar tails oriented towards the surrounding water thus forming a micelle.

Water

Water is used as the medium to disperse these micelles. During the process the water acts as a solvent for the surfactants and initiators, as well as a heat transfer medium.

2

Initiator

The initiators (catalysts) usually used are water soluble peroxidic salts such as ammonium or sodium peroxydisulfate. The reaction can be initiated either by thermal or redox initiation.

In thermal initiation the peroxydisulfate dissociates to give two SO4-radicals.

-O3S?O?O?SO3- ? 2SO4- ?
Peroxydisulfate sulfate radical

In redox initiation a reducing agent (usually Fe2+or Ag+) is used to provide one electron, causing the peroxydisulfate to dissociate into a sulfate radical and a sulfate ion:
Fe2+ + -O3S?O?O?SO3- ? Fe3+ + SO4- ? + SO42-

Peroxydisulfate sulfate radical

The emulsion polymerisation process can be carried out in a reaction kettle, which is fitted with a jacket for heating and cooling to allow control of temperature during the reaction.

Surfactant and water are first charged into the kettle. The monomer emulsion and initiator solution (containing redox agents to split the persulphate into sulphate radicals) is then transferred from the monomer feed tank into the kettle at a controlled rate. The mixture in the kettle is constantly agitated while the monomer is being added. During this time the monomer polymerises in accordance with the reactions given below:

.SO4 + CH2=CRCOOR? -OSO3 CH2 RC.COOR?

Monomer monomer radical

. .
SO CH C(COOR’) +CH=RC (COOR’)
4 2 2

Monomer radical

-SO CH -RC(COOR’)CH 2 RC. COOR’ 4 2

Dimer radical

Custom tab

Back to Top
Product has been added to your cart
×